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1. EXECUTIVE SUMMARY 

ODIN Reservoir Consultants was commissioned by the Department of Mines, Industry 

Regulation and Safety (DMIRS) to provide a multi-disciplinary group with sub-surface skill 

sets to: 

1) Undertake an interpretation of the 3D seismic data; 

2) provide support through reservoir model building and updating of the South West Hub 

Project in the southern Perth Basin; and 

3) provide on-going technical support. 

As an integral part of the above, ODIN Reservoir Consultants conducted reservoir simulation 

studies to assess the suitability of the Lesueur Formation in the South West Region of 

Western Australia as a potential carbon dioxide geological sequestration site.  

The objective of the simulation study was to provide a suite of full field simulation models 

which cover a range of subsurface uncertainties that provides confidence that the CO2 plume 

stays below 800mTVDss and within the storage complex for 1000 years. The results of this 

study will enable a Go/No Go decision on additional data acquisition in the Harvey area. 

Dynamic modelling of the CO2 sequestration process in the Harvey area was conducted in 

two ways: 

 “Black Oil” Modelling – A simplified description of the physics of the fluids based on 

simple interpolation of PVT properties as a function of pressure. 

 Compositional modelling - Using a "compositional" approach based on a 

thermodynamically-consistent model such as a cubic equation of state (EOS).  

In the Harvey area, most of the modelling was conducted using the “Black Oil” formulation. 

Specific cases were tested in a compositional model as a sense check. The results of the 

Black Oil and compositional modelling show that it could be feasible to inject 800,000 tpa of 

CO2 over 30 years in the Lesueur Formation in the Harvey area. Our modelling studies show 

that all of the injected CO2 remains in the area of interest and that the main factors controlling 

CO2 plume migration are: 

 

 the solubility of CO2 in brine 

and 
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 The combination of the transmissibility of fluids across the faults, and high vertical 

permeability fracture zones close to faults.  

 

The results of the modelling also show that communication between the Wonnerup and 

Yalgorup Members, through faults or sand-to-sand communication does result in migration 

of CO2 into the Yalgorup Member. Nevertheless, the injected CO2 remains in the Lesueur 

Formation and within the area of interest even in pessimistic geological and fluid flow 

realisations, which have a low chance of occurring. 
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2. INTRODUCTION  

ODIN Reservoir Consultants was commissioned by the Department of Mines, Industry 

Regulation and Safety (DMIRS) to provide a multi-disciplinary group with sub-surface skill 

sets to: 

1) Undertake an interpretation of the 3D seismic data; 

2) provide support through reservoir model building and updating of the South West Hub 

Project in the southern Perth Basin; and 

3) provide on-going technical support. 

As an integral part of the above, ODIN Reservoir Consultants conducted reservoir simulation 

studies to assess the suitability of the Lesueur Formation in the South West Region of 

Western Australia as a potential carbon dioxide geological sequestration site capable of  

injecting 800,000 tonnes per annum of CO2 and containing the CO2 for at least 1000 years 

after injection ceases. The location and area of interest of the study is shown in Figure 2-1.  

The objective of the simulation study is to provide suite of full field simulation models which 

cover uncertainties and demonstrate plume profiles over 1,000 years and containment of the 

plume below 800mTVDss and within the storage complex for 1000 years that will enable a 

Go/No Go decision on additional data acquisition. 

Dynamic Modelling or Simulation is a key step within the modelling workflow (Figure 2-2) 

which is the study of fluid flow within the Static 3D Geological Model.  The results are analysed 

and compared to expected reality.  The findings of the simulation study may be fed back into 

building another version of the 3D geological model to either refine the results or assist with 

defining the uncertainties/sensitivities of the reservoir.   
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Figure 2-1 Location Map of the Harvey Area showing the Area of Interest 

 

Figure 2-2 ODIN Modelling Workflow 
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3. INPUT FOR MODELLING 

3.1 Temperature Regime 

Bottom hole temperatures were recorded on all the wireline logging runs in GSWA Harvey 1, 

DMP Harvey-2, DMP Harvey-3 and DMP Harvey-4 (Figure 3-1). The maximum temperature 

recorded was nearly 76º C at a measured depth of about 2860m in GSWA Harvey 1. This 

represents a geothermal gradient of between 20-25 ºC/km. 

 

 

Figure 3-1 Temperature Measurements for the Harvey wells 
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3.2 Pressure Regime 

Pressure measurements were made with the formation pressure sampling tools in GSWA 

Harvey 1 and DMP Harvey-4 are summarised in Figure 3-2. The data are consistent with a 

normally pressured aquifer extending to surface. 

 

 

Figure 3-2 Pressure data from Harvey-4 and -1 

3.3 Relative Permeability Data 

Twenty seven core plugs from the GSWA Harvey 1, DMP Harvey-2, DMP Harvey-3 and DMP 

Harvey-4 wells were nominated for special core analysis (SCAL). The core plugs underwent 

computed tomography (CT) scans to ensure that the samples were not compromised by 

internal fractures or heterogeneities which could affect the SCAL (Appendix 1, Reference 2). 

Sixteen core plugs were selected for SCAL from the results CT scans (Table 3-1). 
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Table 3-1 Samples Selected for SCAL 

3.3.1 Steady State Relative Permeability 

Six of the plugs underwent steady state CO2-Brine drainage and imbibitioni  experiments (Table 

3-2). Figure 3-3 and Figure 3-4 show the drainage and imbibition relative permeability data for 

the Harvey wells. Hysteresis of the non-wetting phase is evident in all samples. The wetting 

phase exhibits negligible hysteresis.   

 

 

Table 3-2 Steady State Data  

                                                      
i Sample 20 from Harvey-3 was analysed in 2016 (Reference 3). 
 

Well

Sample 

Number

Sample 

Depth, 

meters

Kair

mD Facies

Harvey-1 12A 2528.07 50.7 HE

Harvey-1 13A 2530.03 104 HE

Harvey-1 7A 1911.84 0.838 LE

Harvey-1 15A 2518.42 0.39 LE

Harvey-1 7B 1911.89 0.9 LE

Harvey-1 8B 1919.9 2.6 LE

Harvey-1 9B 2491.78 257.0 HE

Harvey-1 11A 2522.54 22.0 LE

Harvey-3 20 1429 22 LE

Harvey-3 4A 1369.84 114.0 HE

Harvey-3A 1A 1427.47 269 LE

Harvey-3A 3B 1392.35 7.2 LE

Harvey-4 6B 1794.27 1360 HE

HE= High Energy 

LE=Low Energy



 
DMIRS – SW Hub Phase 2 Modelling  Confidential 

Page 15 of 87 June 2018 

 

Figure 3-3 Steady State Drainage and Imbibition Relative Permeability - Samples 1A, 7A, 15A and 13a 

 

Figure 3-4 Steady State Drainage and Imbibition Relative Permeability Samples 6B, 12A and 20 

Harvey-3 Sample 1a Harvey-1 Sample 7a

Harvey-1 Sample 15a Harvey-1 Sample 13a

  
       

  
       

  
       

  
       

Harvey-1 Sample 6B Harvey-1 Sample 12a

Harvey-3 Sample 20
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3.3.2 Unsteady State Relative Permeability Data 

Ten plugs underwent unsteady state CO2-Brine relative permeability experiments (Table 3-3). 

Only end point data was reported from Reference 2. The unsteady state samples 206647, 

206660, 206669, 11, 135, 4 and 8 were reviewed in Reference 19. 

 

 

Table 3-3 Unsteady State Data 

3.3.3 Relationship of SCAL Results to Rock Properties 

3.3.3.1 End Point Relative Permeability 

Figure 3-3 to Figure 3-7 plots the end point relative permeability data against rock 

classification. The plots show that there is no discernible correlation between the end point 

relative permeability data of the samples to facies, rock classifications such as Flow Zone 

Indicators (FZI) or Hydraulic Flow Units (HFU). An average value of the non-wetting phase 

end point data of 0.08 and wetting phase end point of 0.32 was used in the modelling. Figure 

3-7 shows that the end point data from the Harvey plugs are comparable to the data from 

Reference 4.   

 

Well

Sample 

Number

Sample 

Depth, 

meters

Kair

mD

Porosity, 

fraction:

Specific 

Permeability 

to Water, mD

Specific 

Permeability 

to gas, mD

Sg Max

Fraction

SGT

Fraction

Harvey-1 206647 1901.61 525.0 0.155 48 10.7 0.55 0.23

Harvey-1 206660 1935.5 128.2 0.156 16.5 3.4 0.6 0.43

Harvey-1 206669 2491.56 298.1 0.126 238 40.94 0.58 0.34

Harvey-1 7B 1911.89 0.9 0.108 0.297 0.240 0.574 0.213

Harvey-1 8B 1919.9 2.6 0.126 0.875 0.187 0.416 0.172

Harvey-1 9B 2491.78 257.0 0.135 62.730 23.460 0.467 0.145

Harvey-1 11A 2522.54 22.0 0.133 9.029 7.598 0.685 0.317

Harvey-3 4A 1369.84 114.0 0.218 1.209 0.915 0.309 0.122

Harvey-3A 3B 1392.35 7.2 0.142 0.076 0.034 0.381 0.201

Harvey-3 11 1420 42.5 0.234 19.500 4.570 0.467 0.191

Harvey-3 135 1544 1130.0 0.191 530.00 58.000 0.434 0.374

Harvey-4 4 1793 2720.0 0.217 2180.00 251.000 0.352 0.296

Harvey-4 8 1799 67.7 0.174 18.00 2.630 0.581 0.180

Unsteady State Data
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Figure 3-5 End Point Relative Permeability to Water @ 100% SW vs k/phi 

 

Figure 3-6 End Point Relative Permeability to Water @ SgT vs k/phi 
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Figure 3-7 End Point Relative Permeability to Gas @ SgMax vs k/phi  

 

Figure 3-8 Comparison of End Point Relative Permeability to Gas @ SgMax and published data  

3.3.3.2 Maximum Gas Saturation (SgMax) 

Figure 3-9 shows the initial gas saturation as a function of permeability. The plot shows that 

a correlation can be discerned which links the initial gas saturation to the permeability of the 

rock and provides a reasonable basis for populating the dynamic model with flow properties.  
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Figure 3-9 SgMax vs. Permeability 

3.3.3.3 Trapped Gas Saturation 

Figure 3-10 shows the trapped gas saturation as a function of SgMax for steady and unsteady 

state data from the Harvey wells. The observed trapped gas saturation (SgT) from the steady 

state data is a good fit to the Land Correlation (Reference 5). The best fit was obtained with 

a correlation parameter, C, of 1.95. There was too much scatter in the unsteady state data to 

obtain a meaningful fit to the Land Correlation. Figure 3-11 compares the trapped gas data 

from Harvey with the data from Reference 4 . The plot shows that the scatter in the trapped 

gas data from Reference 4 is comparable to the scatter observed from the unsteady state 

data from Harvey.  Figure 3-12 shows that there is no correlation between trapped gas 

saturation and facies.  
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Figure 3-10 Trapped Gas Saturation vs. SgMax 

 

Figure 3-11 Comparison of Trapped Gas Saturation vs SgMax and published data 
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Figure 3-12 of Trapped Gas Saturation vs SgMax by facies 

3.3.4 Relative Permeability Relationships 

3.3.4.1 CO2 Relative Permeability 

Figure 3-13 shows the CO2 relative permeability curves for the drainage cycle from the steady 

state core data from Harvey. There is a good fit between the observed data and the Brooks-

Corey model (Reference 7) using λ of 1.2. The Brooks-Corey model with λ of 1.2 is also a 

reasonable fit of the relative permeability data from the imbibition cycle (Figure 3-14).  
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Figure 3-13 Comparison of CO2 Relative Permeability Curves and Brooks-Corey Model (CO2 Displacing Water) 

 

Figure 3-14 Comparison of CO2 Relative Permeability Curves and Brooks-Corey Model (Water Displacing CO2) 

3.3.4.2 Water Relative Permeability 

Figure 3-15 shows the water relative permeability curves for the imbibition and drainage cycle 

from the steady state core data from Harvey. A good fit between the observed data and the 

Purcell model (Reference 8) using λ of 1.2. Reference 9 and 10 indicated that the Purcell 

relative permeability model fits the wetting phase relative permeability well and the Brooks-

Corey model is a better fit of the non-wetting phase relative permeability.  
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Figure 3-15 Comparison of Water Relative Permeability Curves and Purcell Model 

3.3.5 Capillary Pressure Data 

No CO2-brine capillary pressure data was obtained for the Harvey plugs. Air-Mercury capillary 

pressure data for five samples (Table 3-4) with a wide range of rock properties were reported 

in Reference 2. The air-mercury capillary pressure data were converted to CO2-brine capillary 

pressure data at reservoir conditions using IFT*Cosine Contact Angle of 19 dyne/cm 

(Reference 2). An example of the converted data for Sample 20 is shown in Figure 3-16.  

Figure 3-17 and Figure 3-18 show the fit of the converted MICP data with Brooks-Corey 

model. In most instances, a good fit was obtained with λ=1.2 as in the relative permeability 

data. In one case a good fit was achieved with λ=1.3.  
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Figure 3-16 Air-Mercury and CO2-Brine Capillary Pressure (Reference 2). 

 

Figure 3-17 Fit of CO2-Brine Capillary Pressure vs Normalised Wetting Phase Saturation with Brooks-Corey Model (Samples 
20, 135, 4 and 11) 
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Figure 3-18 Fit of CO2-Brine Capillary Pressure vs Normalised Wetting Phase Saturation with Brooks-Corey Model (Sample 8) 

3.3.6 Observations 

The drainage and imbibition relative permeability curves can be fit to the Brooks-Corey and 

Purcell models with a λ=1.2. This λ also fits the MICP data from the Wonnerup. 

There is a lot of scatter in SgT and SgMax from unsteady state data. It is recommended that 

only steady state data be acquired in any future relative permeability experiments. 

3.4 Brine Salinity 

Five water samples were retrieved from DMP Harvey-3 and DMP Harvey-4: two from DMP 

Harvey-3 and three from DMP Harvey-4. All five samples were likely contaminated, as 

suggested by elevated potassium and chloride figures (Reference 11). Both samples from 

DMP Harvey-3 were heavily contaminated and are not reliable (Reference 13). The three 

samples were retrieved from DMP Harvey-4 and analysed by Core Laboratories (Reference 

12). It was suggested that the contamination of Sample 1 from DMP Harvey-4 was not as 

severe as the samples from DMP Harvey-3. Core Laboratories used the sample from the 

Wonnerup as the basis of a synthetic “uncontaminated” brine composition for the Wonnerup.  
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Table 3-5 is a list of the water samples from Harvey. The synthetic sample from Core 

Laboratories was used in the full field simulation. 

 

 

Table 3-5 Water Samples from Harvey 

3.5 Geological Model 

Reservoir property and structural information for the Harvey model were imported directly 

from Petrel.  

 

 
 
 



 
DMIRS – SW Hub Phase 2 Modelling  Confidential 

Page 27 of 87 June 2018 

4. BLACK OIL MODELLING OF CO2 SEQUESTRATION 

The use of a “Black Oil” model to model CO2 sequestration is well established and a number 

of studies have been conducted using this technique (Reference 15 and 16). Black Oil 

Modelling uses a simplified description of the physics of the fluids based on simple 

interpolation of PVT properties as a function of pressure. This method of modelling CO2 

sequestration is attractive as it allows reservoir uncertainties and development sensitivities 

to be evaluated relatively quickly compared to compositional modelling. Nevertheless, it was 

recommended that selected cases in the full field modelling study are checked against a fully 

compositional model (Reference 14). 

4.1 Full Field Model of the Harvey Area 

4.1.1 Grid Dimensions 

The full field model of the Harvey Area of Interest (Figure 2-1) was constructed with grid 

blocks of 250X250 metres in the I- and J-directions with the resolution of the layers in the 

Yalgorup retained at the geological model scale of 1 metre. In the Wonnerup, the 4 metre 

layers were used (Figure 4-1).  Extensive grid sensitivity studies indicated that indicate that 

the Wonnerup sands can be upscaled successfully to vertical resolution of 4 metres 

(Reference 19).  

To further reduce the number of cells in the full field model, all cells with a depth shallower 

than 800mTVDss was made void. Migration of CO2 shallower than 800mTVDss is considered 

a breach of containment as the CO2 changes from a supercritical state to a gaseous state at 

depths shallower than 800mTVDss. The dimensions of the model are summarised below: 

 48 cells in the I-direction 

 39 cells in the J-direction 

 1,050 cells in the K-direction 

 1,965,600 cells of which 1,196,457 are active cells 

 Cell sizes of 250mX250mX1m in the Yalgorup 

 Cell sizes of 250mX250mX4m in the Wonnerup 

 The Yalgorup is modelled in Layers 1 to 700 

 The Wonnerup is modelled in Layers 701-1,050 
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Figure 4-1 View of Model Showing Permeability Distribution 

4.2 Initialisation Parameters 

The full field model was initialised with the following parameters: 

• Initial Pressure 

o Initial pressure based on the RCI data from Harvey-1.  

o Reference pressure of 19327 kpa at 1900 metres. 

• The model was initialised as completely oil saturated with the initial solution gas-oil ratio, 

Rsi, set to zero. 

For this study, the Black Oil version of the reservoir simulation package from Reservoir Fluid 

Dynamics, tNav™, was selected. The Black Oil models constructed in this study are fully 

compatible with Schlumberger’s simulator Eclipse™. 

4.3 Modelling Temperature 

Black oil models are isothermal and reservoir temperature is not required. Fluid properties 

are calculated at a single temperature and input as a table. The PVT data for the Black Oil 

model of the Reference Case was calculated at 55°C which is the reservoir temperature at a 

depth of about 1600mTVDss.  This depth is roughly the mid-point of the Pore Volume of the 

model (i.e. 50% of the pore volume of the model is shallower than 1600mTVDss and 50% is 

deeper). 
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4.4 CO2 and Water Properties 

In Black Oil simulation of CO2 sequestration in aquifers the oil is assigned the properties of 

the water phase and gas are assigned the properties of CO2. The input to the Black Oil model 

was generated using software created by CSIRO (J. Ennis-King 2017, personal 

communication, 22 September). In Eclipse, the properties of the brine and CO2 are 

represented by Live Oil tables (Figure 4-2) and dry gas (Figure 4-3). The solubility of CO2 in 

the 44,600 ppm brine was represented by the solution gas ratio as a function of pressure.  

 

 

Figure 4-2 PVT Properties – Oil (PVTO) 
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Figure 4-3 Dry Gas PVT Properties (PVTG) 

4.5 Fluid Flow Data for Simulation 

Figure 4-4 shows a plot of the distribution of permeability in the Best Technical Case 

(Reference Case) model of the Area of Interest. The plots shows that the distribution of 

permeability can be subdivided into seven groups: 

1. Permeability < 50 mD 

2. Permeability between 50 and 100 mD. 

3. Permeability between 100 and 150 mD. 

4. Permeability between 150 and 200 mD. 

5. Permeability between 200 and 250 mD. 

6. Permeability between 250 and 300 mD. 

7. Permeability greater than 300 mD. 

Seven sets of relative permeability and capillary pressure curves for each of the groups with 

the following parameters: 

 The wetting phase relative permeability curves were generated using the Purcell 

equation with λ of 1.2.  

 Non-Wetting phase relative permeability curves were generated using the Brooks-

Corey model with λ of 1.2. 
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 Drainage capillary pressure curves were generated using the Brooks-Corey model 

and imbibition capillary pressure curves were generated using the Li-Horne model 

(Reference 10). 

 Trapped gas saturation, SgT, for each of the permeability classes was generated using 

the Land Correlation with C=1.95.  

 SgMax for each class was generated using the relationship observed from the core 

data (Section 3.3.3.2). 

The relative permeability and capillary pressure curves were assigned to the simulation 

model using saturation regions (SATNUMs) according to the permeability ranges (Table 4-1). 

Figure 4-5 to Figure 4-7 show examples of the drainage and imbibition wetting and non-

wetting phase relative permeability, and capillary pressure curves 

 

 

Figure 4-4 Cumulative Distribution of Permeability in the Harvey Dynamic Model 
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Table 4-1 Saturation Table Assignments (SATNUM) in the Harvey Dynamic Model 

 

Figure 4-5 Example of Drainage and Imbibition Relative Permeability Curves (Non-Wetting Phase, SATNUM 6) 
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1 Permeability<50 0.249 0.485

2 50<Permeability<100 0.255 0.505

3 100<Permeability<150 0.257 0.515

4 150<Permeability<200 0.258 0.521

5 200<Permeability<250 0.259 0.525

6 250<Permeability<300 0.260 0.529

7 300<Permeability 0.262 0.536
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Figure 4-6 Example of Drainage and Imbibition Relative Permeability Curves (Wetting Phase, SATNUM 6) 

 

Figure 4-7 Example of Drainage and Imbibition Capillary Pressure Curves (Non-Wetting Phase, SATNUM 6) 
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4.6 Aquifer Extent 

The full field model of the Harvey area by no means captures the full extent of the Wonnerup 

and Yalgorup aquifers. Figure 4-8 shows that the Yalgorup and Wonnerup (Reference 1) are 

unconstrained at least 50km to the north and 25km to the south of the area of interest. To 

model the likely extent of the aquifer the pore volume of the columns at the end of the model 

were increased (Figure 4-9) using multipliers. 

 

 

Figure 4-8 Time Structure maps of the: a) top Yalgorup Member; b) top Wonnerup Member (After Reference 1) 
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Figure 4-9 Modelling the Extent of the Wonnerup and Yalgorup Aquifers 
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5. CO2 PLUME – BLACK OIL MODEL 

5.1 Reference Case Definition 

The conceptual development plan for the Harvey area envisages injection of 800,000 tonnes 

of CO2 per year for 30 years. At the end of the 30 year injection period, the wells are shut-in 

and the CO2 is allowed to dissipate through the aquifer. In this work, it was assumed that 3 

wells laid out in a line-drive configuration would be used to inject CO2 into the Wonnerup 

reservoir (Figure 5-1). All of the wells are completed in the bottom 250m of the Wonnerup at 

a depth of over 3,000mTVDss (Figure 5-2). 

The Reference Case for the study is defined as follows: 

 Reservoir 

o All faults are assumed to be not sealing 

o Wonnerup and Yalgorup are assumed to be in communication 

 Model built in Eclipse™ Black Oil format. 

 PVT Properties 

o Oil properties calculated using a salinity of 46 g/L H2O 

o Temperature of 55oC 

 Rock-Fluid 

o Hysteresis of the gas phase is assumed based on the results of the SCAL 

o No hysteresis of the water phase based on the results of the SCAL 

 Injection 

o Dry gas (“CO2”) is injected at rate of 1.2 million m3/day 

o Injection begins on an arbitrary date of 1/1/2020 and ends on 10/1/2050 

 Bottom hole pressure constraint = 360 bars @ mid-point injection depth of 3250m [34 

bars above pore pressure] 

 Fluid flow: 

o Carlson’s Hysteresis Model chosen as default 
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Figure 5-1 Porosity Grid Showing Well Locations in the Model 

 

Figure 5-2 Cross Section through Injectors Showing Completion Intervals 
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years for a cumulative injection of 24 million tonnes of CO2. The bottom hole pressures during 

the injection period (Figure 5-4) are lower than the bottom hole pressure constraint. 

Figure 5-5 shows the CO2 distribution in the model 1,000 years after injection. The plots show 

that the CO2 front does not reach the location of GSWA Harvey-1 even after, 1000 years.  An 

East-West cross section shows that the CO2 front rose to a depth of 2,154mTVDss and 

remains within the Wonnerup. The Wonnerup is considered the primary containment unit and 

the Yalgorup the secondary for the CO2. 

Figure 5-6 shows that the movement of CO2 in the model effectively stops after about 600 

years. The volume of trapped gas peaks at about 400 years and declines as the gas dissolves 

in the liquid phase. Consequently, the volume of gas dissolved in the liquid phase continues 

to increase over the time period modelled.  

The material balance accounting of the CO2 injected in the Reference Case model after 1,000 

years (Table 5-1) show that about 59% of injected CO2 is dissolved in water. The remainder 

is in a supercritical phase. 

 

 

Figure 5-3 Injection Profile - Reference Case (Black Oil) 
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Figure 5-4 Bottom hole pressure profile during the Injection period 

 

Figure 5-5 CO2 Plume Shape Reference Case (After 1000 years of shut-in) 
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Figure 5-6 CO2 Material Balance vs. Time – Reference Case 

 

Table 5-1 Material Balance Accounting @ 1000 years – Reference Case Model 

5.2 Grid Sensitivity Check 

In Reference 14, grid sensitivity studies concluded that the solubility of the injected gas can 

be reasonably calculated using the coarse scale model with cell dimensions of 250X250m. 

Reference 14 indicated that a finer grid size, 100X100m, could be used if it is important to 

have an understanding of the shape of the injected gas plume. Figure 5-7 and Figure 5-8 

compare the shape of the plume in the model with Reference Case parameters and 

250X250m grid cells with a model with 100X100m grid cells. The figures show that the plumes 

in the 100X100m and 250X250m models are similar, confirming the results in Reference 14. 

Table 5-2 compares the CO2 material balance in the 100X100m and 250X250m model. The 

table shows that at the end of the 1,000-year shut-in time, the 100X100m model had slightly 
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the distribution of gas in the models is small and confirms that the results of the modelling 

are relatively insensitive to grid block dimensions.  

  

 

Figure 5-7 Areal View of Plume Distribution (Comparison between 250X250m and 100X100m Models @ 1000 years) 

 

Figure 5-8 Plume Distribution Looking South (Comparison between 250X25m0 and 100X100m Models) 
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Table 5-2 Material Balance Accounting (Comparison Between 100X100m and 250X250m Models) 

100X100 Model

250X250 Model

Trapped Gas Mobile Free Gas

Total CO2 

Dissolved Total CO2

(Sm3) (Sm3) (Sm3) (Sm3)

Gas Material Balance 5.4E+09 2.0E+07 7.7E+09 1.3E+10

% of Injected 40.9% 0.2% 59.0% 100%

Supercritical CO2

Trapped Gas Mobile Free Gas

Total CO2 

Dissolved Total CO2

(Sm3) (Sm3) (Sm3) (Sm3)

Gas Material Balance 5.6E+09 2.1E+08 7.5E+09 1.3E+10

% of Injected 41.9% 1.6% 56.5% 100%

Supercritical CO2
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6. IMPACT OF RESERVOIR UNCERTAINTIES ON THE MOVEMENT OF THE CO2 
PLUME 

It is impossible to have precise knowledge of subsurface parameters that can affect the 

movement of CO2 in the reservoir. The key risk is that the CO2 plume breaks out of the Area 

of Interest or rises to a depth shallower than 800m. 

A number of models of the Harvey area were constructed to investigate the effects of the 

reservoir uncertainties on containment failure and the location of the CO2 plume. The model 

is tested with a number of subsurface parameters and combinations of these parameters to 

test the robustness of the development concept. The intent of the uncertainty modelling is to 

“break” the model and identify the mechanism or subsurface parameters that are responsible 

for the failure. Action can then be undertaken to reduce or eliminate the uncertainties 

responsible for the failure of containment. Table 6-1 is a summary of the reservoir 

uncertainties investigated and the parameters used in the investigations. 
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Table 6-1 Case Summary – Full Field Model of the Harvey Area 

Case Case Name Geological Model Description

Reference 3Well Reference 

800,000 tpa.

Brine salinity=45600 ppm (NaCl Equivalent)

SgT based on Land Correlation C=1.95

1 3Well_NoPC Reference 

800,000 tpa.

Brine salinity=45600 ppm (NaCl Equivalent)

No capillary pressures

SgT based on Land Correlation C=1.95

2 3Well_highkrg Reference 

800,000 tpa.

Brine salinity=45600 ppm (NaCl Equivalent)

Krg=0.25

SgT based on Land Correlation C=1.95

3 3Well_bland Wonneup is homogeneous

800,000 tpa.

Brine salinity=45600 ppm (NaCl Equivalent)

SgT based on Land Correlation C=1.95

4 3Well_Hiperm Permeability in I, J and K directions mulitipled by 1.4

800,000 tpa.

Faults not sealing

Brine salinity=45600 ppm (NaCl Equivalent)

SgT based on Land Correlation C=1.95

5 3Well_LowSgt Reference 

800,000 tpa.

Brine salinity=45600 ppm (NaCl Equivalent)

SgT based on Land Correlation C=3.2

6 3Well_HighSalt Reference 

800,000 tpa.

Faults not sealing

Brine salinity=200000 ppm (NaCl Equivalent)

SgT based on Land Correlation C=1.95

7 3Well_highKv Kv=0.8*K Horizontal

800,000 tpa.

Faults not sealing

Brine salinity=45600 ppm (NaCl Equivalent)

SgT based on Land Correlation C=1.95

8 3Well_lowKv Kv=0.1*K Horizontal

800,000 tpa.

Faults not sealing

Brine salinity=45600 ppm (NaCl Equivalent)

SgT based on Land Correlation C=1.96

9 3Well_001Faults Fault Transmissibility * 0.01

800,000 tpa.

Brine salinity=45600 ppm (NaCl Equivalent)

SgT based on Land Correlation C=1.95

10 3WELL_holey_wonnseal

Cells adjacent to faults have the vertical permeability 

increased by 10 times. Wonnerup and Yalgorup  in 

communication through the faults. No sand-on-sand 

communication between the Wonnerup and Yalgorup

800,000 tpa.

Brine salinity=45600 ppm (NaCl Equivalent)

SgT based on Land Correlation C=1.95

11 3WELL_holey

Cells adjacent to faults have the vertical permeability 

increased by 10 times. Communication between 

Wonnerup and Yalgorup through faults and sand-on-sand 

contact.

800,000 tpa.

Brine salinity=45600 ppm (NaCl Equivalent)

SgT based on Land Correlation C=1.95

12 3WELL_holey_NoYal

Cells adjacent to faults have the vertical permeability 

increased by 10 times. No communication between 

Wonnerup and Yalgorup through faults or sand-on-sand 

conact.

800,000 tpa.

Brine salinity=45600 ppm (NaCl Equivalent)

SgT based on Land Correlation C=1.95

13 3Well_holey_wonnseal_lowsol

Cells adjacent to faults have the vertical permeability 

increased by 10 times. Wonnerup and Yalgorup  in 

communication through the faults.

800,000 tpa.

Brine salinity=200000 ppm (NaCl Equivalent)

SgT based on Land Correlation C=1.95

14 3WELL_holey_wonnseal_faults001

Fault Transmissibility * 0.01. Cells adjacent to faults have 

the vertical permeability increased by 10 times. Wonnerup 

and Yalgorup  in communication through the faults.

800,000 tpa.

Brine salinity=45600 ppm (NaCl Equivalent)

SgT based on Land Correlation C=1.95
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6.1 Case 1 - No Capillary Pressure 

Drainage and imbibition capillary pressures were ignored in previous modelling studies 

(References 14 and 19). The impact of capillary pressures on the movement of the CO2 plume 

was investigated in Case 1. In this case, the model was run without drainage or capillary 

pressure curves. Figure 6-1 shows the concentration of gas (i.e. gas in place) in the model. 

The highest concentration of gas is close to the wells and lowest is farther from the wells. 

Figure 6-1 compares the areal distribution of the CO2 plume in Case 1 and the Reference 

Case. The result shows that there is little difference between the Reference Case and Case 

1. Figure 6-2 compares the side view of the plume movement in Case 1 and the Reference 

Case. The difference in the shape of the plumes is indistinguishable.  

 

 

Figure 6-1 Areal View of Plume Distribution (Comparison between Reference and No PC Models) 

Harvey-1 X
X

X
X

Plume Outline of 

Reference Case



 
DMIRS – SW Hub Phase 2 Modelling  Confidential 

Page 46 of 87 June 2018 

 

Figure 6-2 Plume Distribution Looking South (Comparison between Reference and No Pc Model @1000 years) 

6.2 Case 2 – High Relative Permeability to Gas 

End point relative permeability of gas is an uncertainty in fluid displacement processes as 

evinced by the scatter observed in (Figure 3-7). Higher end point relative permeability to the 

non-wetting phase would encourage the lateral and vertical movement of CO2 in the reservoir. 

The impact of higher end point relative permeability was investigated by increasing the non-

wetting phase end point relative permeability to 0.25. An example of the change in non-

wetting phase relative permeability for SATNUM 6 is shown in (Figure 6-3). Figure 6-4 

compares the areal distribution of the CO2 plume in Case 2 and the Reference Case. The 

result shows that there the plume is contained in the Wonnerup and there is little difference 

between the Reference Case and Case 2. Figure 6-5 compares the side view of the plume 

movement in Case 2 and the Reference Case. The plume in the high krg migrated up dip 

farther than in the Reference Case. 
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Figure 6-3 Non-Wetting Phase Relative Permeability – Comparison between Reference and Case 2 

 

Figure 6-4 Areal View of Plume Distribution (Comparison between Reference and High Krg Models) 
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Figure 6-5 Plume Distribution Looking South (Comparison between Reference and High Krg Model @ 1000 years) 

6.3 Case 3 – Homogeneous Wonnerup (“Bland” Model) 

The distribution of facies for this phase of modelling (Reference 17) was influenced by the 

interpretation that the increased number of seismic reflectors indicated a more 

heterogeneous reservoir which became the “Reference Case”.  However, based on the only 

well to penetrate the entire section of the Wonnerup in the Harvey area, the Wonnerup 

appears more homogeneous or ‘bland’.  Therefore, a “Bland” case was created using the 

results of the GSWA Harvey-1 well which encountered ~90% net-to-gross within the 

Wonnerup Member.  

Figure 6-6 compares the areal distribution of the CO2 plume in the “bland” geological 

realisation of the Wonnerup and the Reference Case. The result shows that there is little 

difference in the shape of the plume between the Reference Case and Case 3. Figure 6-7 

compares the side view of the plume movement in Case 3 and the Reference Case. The 

plume in the “bland” case migrated up dip farther than in the Reference Case but remains in 

the Wonnerup.  
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Figure 6-6 Areal View of Plume Distribution (Comparison between Reference and “Bland” Models) 

 

Figure 6-7 Plume Distribution Looking South (Comparison between Reference and Bland Model @1000 years) 
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permeability derived using this transform is 110mD which formed as our “Reference 

Case”.  The “High Permeability” realisation was created by multiplying the permeability of all 

the cells by 1.4.  

Figure 6-8 compares the areal distribution of the CO2 plume in the “High Permeability” 

geological realisation of the Wonnerup and the Reference Case. The result shows that there 

is little difference in the shape of the plume between the Reference Case and Case 4. Figure 

6-9 compares the side view of the plume movement in Case 4 and the Reference Case. The 

plume in the two cases are indistinguishable.  

  

 

 

Figure 6-8 Areal View of Plume Distribution (Comparison between Reference and High Permeability Models) 
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Figure 6-9 Plume Distribution Looking South (Reference and High Permeability Model @1000 years) 

6.5 Case 5 – Low Trapped Gas Saturation 

The Land Correlation with C=3.2 was used to generate pessimistic trapped gas saturation 

(Figure 6-10) for the range of permeabilities in the model. Figure 6-11 shows the reduction 

in trapped gas saturation for cells in the model with permeability greater than 300mD.  

Figure 6-12 show that the areal extent of the CO2 plume in Case 5 is similar to the Reference 

Case. Figure 6-13 shows that although the CO2 plume in Case 5 has risen to a shallower 

depth than the Reference Case, the difference between the plumes is minor. Table 6-2 is a 

comparison of the distribution of CO2 in Case 5 and the Reference Case. 
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Figure 6-10 Land Correlation Parameter Used to Generate Pessimistic SgT 

 

Figure 6-11 Imbibition Relative Permeability – SATNUM 7 (k > 300 mD) 
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Figure 6-12 Areal View of Plume Distribution (Comparison between Reference and Low SgT Models) 

 

Figure 6-13 Plume Distribution Looking South (Reference and Low SgT Model @ 1000 years of shut-in) 
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Table 6-2 Material Balance Accounting @ 1000 years (Comparison between Reference and Low SgT Models) 

6.6 Case 6 – Low Gas Solubility 

In this scenario, the model was run assuming a brine salinity of 200 g/L H2O NaCl Equivalent 

to reduce the volume of CO2 dissolved in the liquid phase to address the issue of “unknown 

unknowns” that could lead to uncertainty in the amount of mobile CO2. 

Figure 6-14 shows that the areal extent of the CO2 plume in the low solubility case is smaller 

than the Reference Case because the lower solubility of the gas in the liquid phase results in 

the plume rising to a shallower depth (Figure 6-15) but still remaining in the Wonnerup. Table 

6-3 is a summary of the distribution of CO2 in the model 1,000 years after the cessation of 

injection. The table shows that the amount of CO2 dissolved in the liquid phase was reduced 

from 64% to 37% whereas trapped gas increased from 36% to 63%. These results show that 

in a closed system, CO2 that is not dissolved will be trapped. 
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Figure 6-14 Areal View of Plume Distribution (Comparison between Reference and Low Solubility Models) 

 

Figure 6-15 Plume Distribution Looking South –Reference and Low solubility scenario After 1000 years of shut-in 
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Table 6-3 Material Balance Accounting @ 1000 years (Comparison between Reference and Low Solubility Models) 

6.7 Case 7 – High kv/kh 

The ratio of vertical-to-horizontal permeability (kv/kh) in the Reference Case (Figure 6-16) 

varies due to the manner in which the shales and sands are distributed in the geological 

model. As a result, there are patches in the model where the kv/kh is low, which might act to 

retard the vertical migration of CO2, and zones where the kv/kh are high, which might promote 

the vertical migration of CO2. To examine the impact of a uniformly high kv/kh ratio on the 

flow of CO2, the vertical permeability in the cells are made equal to 0.8 times the horizontal 

permeability. Figure 6-17 shows that the increase in kv/kh has little impact on the areal extent 

of the CO2 plume. The increase in kv/kh did promote the migration of CO2 vertically (Figure 

6-18) but the effect was modest. 

 

Reference Case

200,000 ppm Scenario

Trapped Gas Mobile Free Gas

Total CO2 

Dissolved Total CO2

(Sm3) (Sm3) (Sm3) (Sm3)

Gas Material Balance 4.8E+09 1.3E+07 8.5E+09 1.3E+10

% of Injected 36% 0% 64% 100%

Supercritical CO2

Trapped Gas Mobile Free Gas

Total CO2 

Dissolved Total CO2

(Sm3) (Sm3) (Sm3) (Sm3)

Gas Material Balance 8.4E+09 8.7E+06 4.9E+09 1.3E+10

% of Injected 63% 0% 37% 100%

Supercritical CO2
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Figure 6-16 kv/kh Distribution – Wonnerup Sands (Reference Case) 

 

 

Figure 6-17 Areal View of Plume Distribution (Comparison between Reference and High kv Models) 
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Figure 6-18 Plume Distribution Looking South –Reference and High kv/kh scenario after 1000 years of shut-in 

6.8 Case 8 – Low kv/kh 

To examine the impact of a uniformly low kv/kh ratio on the flow of CO2, the vertical 

permeability in the cells are made equal to 0.1 times the horizontal permeability. This scenario 

was created to examine the impact of a low kv/kh in the Wonnerup on the lateral migration of 

the CO2. Low kv/kh would promote flow of CO2 in a lateral direction which might result in the 

plume reaching the “East-West” fault and substantially increase the risk of containment 

failure. Figure 6-19 shows that CO2 plume in the low kv/kh scenario occupies a larger area 

than the Reference Case as a result of the plume being more compact (Figure 6-20) 

compared to the Reference Case due to more lateral movement of the gas.  
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Figure 6-19 Areal View of Plume Distribution (Comparison between Reference and Low Kv Models) 

 

Figure 6-20 Plume Distribution Looking South –Reference and Low kv/kh scenario after 1000 years of shut-in 

6.9 Case 9 – Low Fault Transmissibility 

The Wonnerup is about 1,600m thick with a net-to-gross higher than 90%. The intrafield faults 
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baffles or barriers to the flow of fluids. Nevertheless, cataclastic processes might result in 

some of the faults having lower transmissibility. To model this effect, a transmissibility 

multiplier of 0.01 (Figure 6-21) was used on all faults to increase the resistance to flow 

between the cells affected by the faults to investigate if the lower lateral transmissibility would 

result in the injected CO2 preferentially flowing vertically. 

Figure 6-22 shows that the CO2 plume in Case 9 is aerially more compact than the Reference 

Case. The high intensity of gas concentration close to the wells indicate that the reduction in 

fault transmissibility encouraged the vertical migration of gas (Figure 6-23). Nevertheless, the 

gas is contained in the Wonnerup. 

 

 

Figure 6-21 Areal View – Top Wonnerup in the Model showing transmissibility in the X-direction 

 

Figure 6-22 Areal View of Plume Distribution (Comparison between Reference and Low Fault Transmissibility Models) 
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Figure 6-23 Plume Distribution Looking South - Reference and Low Fault transmissibility Model @1000 years  

6.10 Case 10 – High Vertical Permeability (“Holey Faults”) 

The area of interest in the Harvey area is intersected by a number of faults. None of these 

faults are expected to form lateral barriers to flow but the areas near the faults may have 

enhanced vertical permeability due to fractures. The area of interest in the Harvey area is 

intersected by a number of faults. In Case 10, these fracture zones are modelled as areas of 

enhanced vertical permeability (Figure 6-24 and Figure 6-25). The vertical permeability of 

cells adjacent to a fault are increased 10 times.  

Figure 6-26 compares the distribution of CO2 in the Reference Case and Case 10 after 1,000 

years. There is little difference in the distribution of CO2 in between the cases. Figure 6-27 

shows that the CO2 plume has risen to a depth 1366mTVDss in the Yalgorup, the secondary 

containment unit. In this scenario, the Wonnerup and Yalgorup are assumed to be in 

communication through the faults. 
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Figure 6-24 Areal View of Top Wonnerup – Permeability in the Vertical Direction 

 

Figure 6-25 Cross-section through Injectors – Permeability in the Vertical Direction 
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Figure 6-26 Areal View of Plume Distribution (Comparison between Reference and “Holey Faults” Models) 

 

Figure 6-27 Plume Distribution Looking South @1000 years – High Vertical Permeability Scenario (Case 10) 
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In this scenario, it is assumed that communication between the Yalgorup and Wonnerup is 

through the faults and sand to sand contact. Figure 6-28 and Figure 6-29 show the extent of 

the plume in Case 11.  In Figure 6-28 the areal extent of the plume is similar to the Reference 

Case and almost identical to the shape of the plume in Case 10. The rise of the plume in 
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movement of the CO2 via the faults dominates and movement via sand-to-sand 

communication between the Wonnerup and Yalgorup. 

 

 

Figure 6-28 Areal View of Plume Distribution (Comparison between Reference and Case 11) 

 

Figure 6-29 Plume Distribution Looking South @1000 years – High Vertical Permeability Scenario (Case 11) 
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In this scenario, it is assumed that there is no communication between the Yalgorup and 
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Figure 6-30 and Figure 6-31 show the extent of the plume in Case 12. In (Figure 6-30) the 

areal extent of the plume is similar to Cases 10 and 11. Figure 6-31 shows that the plume 

has risen to a depth of 1,415mTVDss. None of the injected gas has reached the “East-West” 

fault. 

 

 

Figure 6-30 Areal View of Plume Distribution (Comparison between Reference and Case 12 

 

Figure 6-31 Plume Distribution Looking South @1000 years – High Vertical Permeability Scenario (Case 12) 
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6.11 Stress Scenarios  

Stress scenarios combine two or more uncertainties to create a pessimistic but low probability 

outcome. Two stress scenarios were created: 

 Case 13 – Combine the realisation where there are higher vertical permeability 

conduits close to the faults and a pessimistic view of gas solubility 

 Case 14 - Combine the realisation where the faults are baffles to the lateral flow of 

fluids and higher vertical permeability conduits close to the faults  

6.11.1 Case 13 - “Holey Faults” and Low Solubility 

This scenario is a combination of Case 11 and Case 6. It combines the two uncertainties in 

the Harvey area: high vertical permeability adjacent to faults and low gas solubility to 

investigate the movement of the CO2 plume.  

 The vertical permeability of the cells adjacent to faults were increased by an order of 

magnitude. 

 The brine salinity is assumed to be 200,000 ppm. 

Figure 6-32 shows the distribution of the CO2 plume in the model. All of the gas is within the 

area of interest. The shallowest level of the gas was in the Yalgorup at a depth of about 

990mTVDss. Only about 2% of the injected gas is in the Yalgorup. 

 

 

Figure 6-32 CO2 Plume Shape of Stress Scenario – Case 13 @1000 years 
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6.11.2 Case 14 - “Holey Faults” and Low Fault Transmissibility 

This scenario is a combination of Case 9 and Case 11. It combines two uncertainties in the 

Harvey area: high vertical permeability adjacent to faults and low fault transmissibility. 

Figure 6-33 shows the distribution of the CO2 plume in the model. All of the gas is within the 

area of interest. The shallowest level of the gas was in the Yalgorup at a depth of about 

1,570mTVDss. Only about 0.3% of the injected gas is in the Yalgorup. 

 

 

Figure 6-33 CO2 Plume Shape of Stress Scenario – Case 14 @1000 years 
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7. DEVELOPMENT SCENARIOS 

Table 7-1 is a summary of the development scenarios run to test the robustness of the 

development concept. 

 

 

Table 7-1 Development Scenarios – Summary of Cases 

7.1 Two Well Case 

A two-well development of the Harvey area was run to test the robustness of the injection 

scheme in the event of the loss of one well. Although the loss of one well would only be 

temporary, this run assumes that only two wells would be available for the life of the project. 

Figure 7-1 shows that injection of 800,000tpa could not achieved for about two years due to 

bottom hole pressure constraints being violated. The bottom hole pressure profiles of the 

injectors show that displacing the low mobility water phase results in increasing bottom hole 

pressures until the constraint is reached. Shortly thereafter, injectivity improves as the 

mobility of the fluids in the near well bore region reduces as CO2 saturation increases around 

the injectors; resistance to injection reduces and injection of 800,000tpa becomes achievable.  

Figure 7-2 shows that the reduction in injectivity has little impact on the overall volume of gas 

Case Case Name Geological Model Description

1 2Well Reference 

Two injectors

800,000 tpa.

Brine salinity=45600 ppm (NaCl Equivalent)

Krg=0.08

SgT based on Land Correlation C=1.95

2 3Well_shallow Reference 

800,000 tpa.

Brine salinity=45600 ppm (NaCl Equivalent)

Krg=0.08

SgT based on Land Correlation C=1.95

Injectors perforated in middle of Wonnerup Member

3 3Well_shallow_NoYal

No communication between Wonnerup and 

Yalgorup through faults or sand-on-sand 

conact.

800,000 tpa.

Brine salinity=45600 ppm (NaCl Equivalent)

Krg=0.08

SgT based on Land Correlation C=1.95

Injectors perforated in middle of Wonnerup Member

4 3Well_Intermediate Reference 

800,000 tpa.

Brine salinity=45600 ppm (NaCl Equivalent)

Krg=0.08

SgT based on Land Correlation C=1.95

Injectors perforated about 300 metres above the Reference 

Case in the Wonnerup Member

5 3Well_Intermediate_NoYal

No communication between Wonnerup and 

Yalgorup through faults or sand-on-sand 

conact.

800,000 tpa.

Brine salinity=45600 ppm (NaCl Equivalent)

Krg=0.08

SgT based on Land Correlation C=1.95

Injectors perforated in middle of Wonnerup Member

6 8Well_3MPTA Reference 

8 injectors

3,000,000 tpa.

Faults not sealing

Brine salinity=45600 ppm (NaCl Equivalent)

Krg=0.08

SgT based on Land Correlation C=1.95
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injected. The distribution of the CO2 plume in the model are shown in (Figure 7-3 and Figure 

7-4). Figure 7-3 shows that the plume in the two-well case is more compact compared to the 

Reference Case as the injection is in a limited area. However, the CO2 plume in the two-well 

case has gone further up dip.   

 

 

Figure 7-1 Bottom hole pressure profile during the Injection period 

 

Figure 7-2 Injection Profile – Comparison of Two Well and Reference Case (Black Oil) 
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Figure 7-3 Areal View of CO2 Plume Shape – Comparison of Two Well and Reference Case @1000 years 

 

Figure 7-4 Looking South - Plume Shape of Two Well and Reference Case Scenarios @1000 years 
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7.2 Shallow Injection 

The shallow injection scenario assumes that the injectors are perforated about 700 metres 

from the base of the Wonnerup at about 2,500mTVDss (Figure 7-5). Figure 7-6 shows that 

at the end of 1,000 years the plume was at 1,137 metres and had not reached the bounding 

fault to the west. About 11% of the injected CO2 is in the Yalgorup.  

Shallow injection is risky. In the event that there is no communication between the Wonnerup 

and Yalgorup, there is no secondary containment and the top Wonnerup acts as a ceiling 

and the CO2 plume reaches the East-West fault (Figure 7-7). 

 

 

Figure 7-5 Completion Intervals – Shallow Injection Depth 
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Figure 7-6 Looking South - Plume Shape of Shallow Injection Depth Scenario @1000 years 

 

Figure 7-7 Areal View @1000 years - Shallow Injection Depth Scenario (Wonnerup and Yalgorup not in communication) 
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The shallow injection scenario assumes that the injectors are perforated about 300 metres 
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Figure 7-8 Completion Intervals – Intermediate Depth Injection Scenario 

 

Figure 7-9 Looking South - Plume Shape of Intermediate Depth Injection Scenario 
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the Wonnerup through nine wells and up to 90 million tonnes could be sequestered over 30 
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Figure 7-11 shows that 3 million tonnes per annum of CO2 could be injected into the 

Wonnerup and up to 90 million tonnes could be sequestered over 30 years. The slight drop 

in injectivity in the early years dissipates quickly as the mobility of the fluid around the well 

decreases due to high CO2 saturation.  

Figure 7-12 shows that, as expected, the increased mass of CO2 injected results in an 

increase in the areal extent of the CO2 plume with the plume almost reaching GSWA Harvey-

1. The increase in the amount of CO2 sequestered results in the plume rising to about 

1,300mTVDss in the Yalgorup (Figure 7-13) and remaining in the secondary containment 

unit. 

 

 

Figure 7-10 Well Locations – High Injection Scenario 
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Figure 7-11 Injection Profile for High Injection Scenario 

 

Figure 7-12 CO2 Plume Shape – Areal view of High Injection Scenario 
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Figure 7-13 Looking South – CO2 Plume Shape of High Injection Scenario 
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8. OBSERVATIONS – BLACK OIL MODELLING 

The results of the black oil modelling show that it could be feasible to inject 800,000tpa of 

CO2 over 30 years in the Yalgorup and Wonnerup formations in the Harvey area. Our 

modelling studies show that all of the injected CO2 remains in the Area of Interest and that 

the main factors controlling CO2 plume migration are: 

 the solubility of CO2 in brine 

and 

 The combination of the transmissibility of fluids across the faults, and high vertical 

permeability fracture zones close to faults.  

The results of the modelling also show that communication between the Wonnerup and 

Yalgorup, through faults or sand-to-sand communication can result in migration of CO2 

between the members.  
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9. COMPOSITIONAL MODELLING 

Simulations conducted using the Black Oil description of the CO2 sequestration (Sections 0 

and 6) show that it could be feasible to inject 800,000tpa of CO2 over 30 years in the Yalgorup 

and Wonnerup formations in the Harvey area. As a sense check, a number of scenarios 

evaluated with the Black Oil model were modelled in a compositional simulator. 

Compositional modelling uses a "compositional" approach based on a thermodynamically-

consistent model such as a cubic equation of state (EOS) approach to simulate the physical 

processes during CO2 sequestration. 

9.1 Simulator Description 

The full field model of the Harvey area was constructed in the compositional simulator, 

GEM™ (Version 2017.10). GEM is a full featured compositional simulator capable of 

modelling: 

 Hysteresis and residual gas trapping. 

 Gas solubility in aqueous phase. 

 Vaporization of water during CO2 injection. 

 Detailed calculations of brine density, viscosity and accounts for solubility of CO2 in the 

brine. 

9.2 Model Conversion 

The compositional model of the Harvey model was converted from the Black Oil model. Direct 

conversion of the black oil to compositional model was possible for the following: 

 Model rock properties. 

 Grid geometry and dimensions. 

 Drainage relative permeability, drainage and imbibition capillary pressure curves. 

o The current version of GEM (v2017.10) does not allow imbibition relative 

permeability curves to be input. Imbibition curves are calculated using the Carlson 

formulation based on the trapped gas saturation. 

 Well production and injection constrains. 

 The Black Oil model is isothermal and reservoir temperature is only required when 

the PVT tables are generated.  
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9.3 Initialisation Parameters 

The full field model was initialised with the following parameters: 

 Initial Pressure (Reference 14) 

o Initial pressure based on the RCI data from GSWA Harvey-1  

o Reference pressure of 19,327 kpa at 1900m 

 Reservoir Temperature (Reference 14) 

o Temperature varies with depth  

o At 800 metres the temperature is 44 °C  

o At 3000 metres the temperature is 76 °C 

 The model was initialised as completely water saturated 

9.4 PVT Model 

The PVT model used in the simulation was constructed in WinProp™  

 The model is a CO2- Brine model with an NaCl concentration of 46 g/l H2O NaCl 

Equivalent 

 Solubility of CO2 in the brine is calculated using Henry’s Law 

 Peng-Robinson Equation of State to model the fugacities of components 

9.5 Case Selection 

Models for three scenarios described in Sections 0 and 6 were re-constructed in the 

compositional model: 

 Reference Case 

 Case 13 – “Holey Faults” with Low Solubility 

and 

 Case 14 – “Holey Faults” with Low Transmissibility Faults 

9.6 Reference Case 

Figure 9-1 compares the areal distribution of CO2 in the Black Oil and compositional model. 

The plume in the compositional model is larger because the CO2 has not risen as much 

vertically (Figure 9-2) compared to the plume in the Black Oil model.  It is noteworthy that 

both the Black Oil and compositional model predict that the injected CO2 remains in the 

Yalgorup and Wonnerup reservoirs in the Harvey area.  
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Figure 9-3 shows that the CO2 is effectively immobile after about 200 years after the cessation 

of gas injection. Table 9-1 compares the distribution of CO2 1000 years after the cessation of 

injection and shows that Black Oil model is more optimistic in solubility but more pessimistic 

in its results for the amount of trapped gas. The difference could be due to two factors: 

 The Black Oil model is isothermal whereas the compositional model has a 

temperature gradient 

 The current version of the compositional simulator uses Carlson’s method to calculate 

the bounding imbibition relative permeability curve based on a value of SgT. In the 

Black Oil model, the bounding imbibition relative permeability curve is input as a table  

 

 

Figure 9-1 Top View Comparison of CO2 Plume @ 1000 years – Reference Case (Black Oil and Compositional) 

Plume Outline of 

Black Oil Model 

Reference Case

Mole fraction of CO2 in water

Axes are in UTM 

Coordinates



 
DMIRS – SW Hub Phase 2 Modelling  Confidential 

Page 81 of 87 June 2018 

 

Figure 9-2 Looking South Comparison of CO2 Plume – Reference Case (Black Oil and Compositional) 

 

Figure 9-3 CO2 Distribution over Time – Reference Case (Compositional Model) 
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Table 9-1 Material Balance Accounting – Reference Case (Black Oil and Compositional Model) 

9.7  “Holey Faults” with Low Solubility (Case 13) 

Figure 9-4 and Figure 9-5 compares the shape of the CO2 plume for Case 13 as calculated 

by the Black Oil and compositional models. The results of both models are similar in that they 

predict that injected gas would migrate to the secondary containment unit in the Yalgorup 

and remain in the area of interest. 

 

(Reference Case - Compositional Model)

(Reference Case – Black Oil Model)

Trapped Gas Mobile Free Gas

Total CO2 

Dissolved Total CO2

(moles) (moles) (moles) (moles)

Gas Material Balance 3.54E+11 2.37E+08 2.13E+11 5.68E+11

% of Injected 62.4% 0.0% 37.5% 100.0%

Supercritical CO2
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Figure 9-4 Areal View CO2 Plume Shape of Stress Scenario 

 

Figure 9-5 Looking South - CO2 Plume Shape of Stress Scenario 
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9.8 “Holey Faults” and Low Transmissibility Faults 

Figure 9-6 compares the shape of the CO2 plume for Case 14 as calculated by the Black Oil 

and compositional models. The results of both models are similar in that they predict that 

injected gas would migrate to the secondary containment unit in the Yalgorup but remain 

within the area of interest. However, the compositional model predicts that the CO2 plume 

would not rise as high as predicted by Black Oil model.  

 

 

Figure 9-6 Looking South – Plume Shape of High Vertical Permeability and Low Fault Transmissibility 
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10. OBSERVATIONS – COMPOSITIONAL MODELLING 

Our modelling shows that the description of the CO2 plume in the compositional models are 

similar to those predicted using the Black Oil models. These results confirm that the Black Oil 

formulation can effectively model CO2 sequestration in the Harvey area and indicate that it 

could be feasible to inject 800,000tpa of CO2 over 30 years in the Yalgorup and Wonnerup 

formations in the Harvey area. 

The results of the compositional modelling also show that communication between the 

Wonnerup and Yalgorup, through faults or sand-to-sand communication, can result in 

migration of CO2 between the members. Nevertheless, the injected CO2 remains within the 

area of interest even in pessimistic and low probability geological and fluid flow realisations. 
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